Improving Ethanol Tolerance of Escherichia coli by Rewiring Its Global Regulator cAMP Receptor Protein (CRP)
نویسندگان
چکیده
A major challenge in bioethanol fermentation is the low tolerance of the microbial host towards the end product bioethanol. Here we report to improve the ethanol tolerance of E. coli from the transcriptional level by engineering its global transcription factor cAMP receptor protein (CRP), which is known to regulate over 400 genes in E. coli. Three ethanol tolerant CRP mutants (E1- E3) were identified from error-prone PCR libraries. The best ethanol-tolerant strain E2 (M59T) had the growth rate of 0.08 h(-1) in 62 g/L ethanol, higher than that of the control at 0.06 h(-1). The M59T mutation was then integrated into the genome to create variant iE2. When exposed to 150 g/l ethanol, the survival of iE2 after 15 min was about 12%, while that of BW25113 was <0.01%. Quantitative real-time reverse transcription PCR analysis (RT-PCR) on 444 CRP-regulated genes using OpenArray® technology revealed that 203 genes were differentially expressed in iE2 in the absence of ethanol, whereas 92 displayed differential expression when facing ethanol stress. These genes belong to various functional groups, including central intermediary metabolism (aceE, acnA, sdhD, sucA), iron ion transport (entH, entD, fecA, fecB), and general stress response (osmY, rpoS). Six up-regulated and twelve down-regulated common genes were found in both iE2 and E2 under ethanol stress, whereas over one hundred common genes showed differential expression in the absence of ethanol. Based on the RT-PCR results, entA, marA or bhsA was knocked out in iE2 and the resulting strains became more sensitive towards ethanol.
منابع مشابه
Improving Acetate Tolerance of Escherichia coli by Rewiring Its Global Regulator cAMP Receptor Protein (CRP)
The presence of acetate exceeding 5 g/L is a major concern during E. coli fermentation due to its inhibitory effect on cell growth, thereby limiting high-density cell culture and recombinant protein production. Hence, engineered E. coli strains with enhanced acetate tolerance would be valuable for these bioprocesses. In this work, the acetate tolerance of E. coli was much improved by rewiring i...
متن کاملEnhancing E. coli Tolerance towards Oxidative Stress via Engineering Its Global Regulator cAMP Receptor Protein (CRP)
Oxidative damage to microbial hosts often occurs under stressful conditions during bioprocessing. Classical strain engineering approaches are usually both time-consuming and labor intensive. Here, we aim to improve E. coli performance under oxidative stress via engineering its global regulator cAMP receptor protein (CRP), which can directly or indirectly regulate redox-sensing regulators SoxR a...
متن کاملCharacterization of Mycobacterium tuberculosis Rv3676 (CRPMt), a cyclic AMP receptor protein-like DNA binding protein.
Little is known about cyclic AMP (cAMP) function in Mycobacterium tuberculosis, despite its ability to encode 15 adenylate cyclases and 10 cNMP-binding proteins. M. tuberculosis Rv3676, which we have designated CRP(Mt), is predicted to be a cAMP-dependent transcription factor. In this study, we characterized CRP(Mt)'s interactions with DNA and cAMP, using experimental and computational approach...
متن کاملPoint mutations in the DNA- and cNMP-binding domains of the homologue of the cAMP receptor protein (CRP) in Mycobacterium bovis BCG: implications for the inactivation of a global regulator and strain attenuation.
The genome of Mycobacterium tuberculosis H37Rv includes a homologue of the CRP/FNR (cAMP receptor protein/fumarate and nitrate reduction regulator) family of transcription regulators encoded by Rv3676. Sequencing of the orthologous gene from attenuated Mycobacterium bovis Bacille Calmette-Guérin (BCG) strains revealed point mutations that affect the putative DNA-binding and cNMP-binding domains...
متن کاملCharacterization of DNA-binding specificity and analysis of binding sites of the Pseudomonas aeruginosa global regulator, Vfr, a homologue of the Escherichia coli cAMP receptor protein.
Vfr, a global regulator of Pseudomonas aeruginosa virulence factors, is a homologue of the Escherichia coli cAMP receptor protein, CRP. Vfr is 91% similar to CRP and maintains many residues important for CRP to bind cAMP, bind DNA, and interact with RNA polymerase at target promoters. While vfr can complement an E. coli crp mutant in beta-galactosidase production, tryptophanase production and c...
متن کامل